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ABSTRACT

The analysis of ballistic missile performance involves the deterzinaticn
of targets for which the effect of propellant depletion is statistically
acceptable. Therefore a , the probability of avoiding propellant de-
pletion prior to normal guidance shut down, plays a fundamental role.

It is convenient to introduce a propellant reserve function J‘f-r and
express Q as the probability that I, 2 0 . Tis protacility is
determined in terms of the statistics of systez parameters by assuzing
& linear expansion of the propellant reserve function over a region
corresponding to dispersion for a particular laurch-site/target combina-
tion. By approximating the probability distribution function for Y as
an equivalent normal one, an explicit solution can be ottained in ter=s

of the expected value, 3"(' , and the standard deviation GO .

Alternately, a range function can be utilized to obtain the same result.
When considering the target-range at constant probability it is useful
to define range-exchange coefficients. Methods are discussed for utiliz-
ing such exchange coefficients to adjust previously obtained perfcrmance
results to account for changes in systez parameters. Also, some addi-
tional approxisations are considered. The results are not essentially

nev but an attempt at a more complete and rigorous presentaticn is

attempted.

L ad bl — e
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RANGE PERFORMANCE AS STATISTICAL TARGET CAPABILITY

The quantitative definition of range performance for a ballistic missile
requires a more detailed concept than simply that of "firing the missile

as far as it will go”". To arrive at a suitable definition, let us consider
a particular launch site of interest, along with the corresponding set of
operationally-shaped trajectories for some specified initial azimuth angle.
There will then exist an associated locus of targets on the earth starting
at some minimum aliowable target-range and extending away from the launch-
site. To define a corresponding "maximum target-range” we must establisnh
the extreme target point out along this locus to vhich we can actually
target the system without deterioration of weapon effectiveness to some
unacceptable level. The assoclated question of targetiing capability there-
fore involves first a definition of system effectiveness for any launch-site
/target combination (necessarily in statistical terms), and second the
specification of "acceptability” as determined by an appraisal of the
exigencies of the military/economic situation. The present discussion

will deal wvith only the technical problem of determining system effective-

ness for all targets of interest from any particular launch-site.

For any selected target a fundamental measure of system performance is kill

probability, which is directly related to the impact statistics. For a
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sufficiently high probability of achieving proper guidance shutdown without
running out of propellesnt, the impact statistics depends only on the accuracy
capability of the guidance system. However, as targets are selected at
greater and greater rauges, the statistics for propellant depletion has a
significant effect, so as to increase impact dispersion and consequently
decrease kill probability. Thus kill probability wvaries with range to the
target. For targets at medium ranges this probability is at an almost con-
stant value corresponding to the statistics of guidance accuracy, and then
decreases sharply as targets at greater ranges are considered and propellant
depletion becomes significant. The "maximum target-range” then corresponcs
to the target for which this deterioration in kill probability due to propel-
lant depletion has reached some acceptable (small) limit value, with targets

at greater ranges corresponding to lower kill probabilities.

The effect of propellant depletion statistics upon impact statistics, and
conseguently upon kill probability, for a giveu launch-site for various
target-ranges is embodied in the guantity a , the probability of avoiding
propellant depletion prior to normal guidance shut down (for a non-malfunc-
tioning missile). A direct relationship can be established so that for a
given launch-site and initial azimuth, we can consider the probability Op as
a convenient measure of system “range performance” that is equivalent w0 a
measure of "effectiveness” for the target being considered. The targetl at
maximum range tuus corresponds to the value of 0' that has been separale-
ly determined as being consistent with a specified allowable deterioration

in kill probability due to propellant depletion.
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To introduce a in mathematical terms we consider it as the conditional
probability for any launch-site/target combinstion corresponding to epprop-
riate design operating conditions such as wind, atmosphere, etc. Let

6, H. denote the geographic latitude, geodetic longitude, and
geodetic altitude respectively for the launch-site and ¢f’ Ar , KBy

similarly for the target. Then we can represent Q by a function as

G

follows:

where

a¢

A

As brought out in the previous discussion, it is useful to introduce a
renge gquantity corresponding to some appropriate measure of separation
between points on the eartn. One possibility for this is a quantity
proportional to the central angle for the two points (ﬂh XJ and
(&, Av) on the reference ellipsoid. We could alsc consider the
geoceriric plane through these two points and define range as the dis-
tance along its elliptical intersection with the reference ellipsoid.
If ve let R, denote the range from launch-site to target, then wve

can express it as & function by

R, = R(% a¢ ) (1

@l‘h, a9, "\/“L,'H} (1.1

Mo A (1.3

¢1- ‘¢.. (1.2)

~
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Rather than utilize tbe geodetic coordinste quantities 8¢, AN to
represent the target location for s given launch site, it i{s more conven-
ient for performance amalysis to introduce some locus of targets on the
refervnce ellipsoid and utilize the target-range R along the locus

es an "identification label” for the corresponiing continuous set of
targets. Thus the performance quantities for this target locus can be
expressed as functions of Ry instead of A6 aX . Various defin-
itions f target loci caa be utilized, e.g., the intersection of the
reference ellipsoid vith a geocentric plane from the launch-site at a
specified azimuth. One method of particular interest is that of specify-
ing the {nitial trajectory szimuth, o€, . For any launch-site/target
combination there will exist an assoclated trajectory with some particu-
lar 0Olg determined uniquely by the specific trajectory calculation
process applicable to the system under consideration. Thus we can ex-

ess Ol as a function by

o, = ofy { “;,‘f’ 6)/ “‘/ ”T}

Then inversely, A%, 8\ can be determined from (1.4), (1.5) 1if

¢‘, «o, r, , H" My are given, so that

8 = sp g e, ki b, W]

4) A)f¢;)“o, R‘l’) “s' “Y}

Substituting (1.6), (1.7) into (1.1) we can then consider an alternate

function for 0' as

Gp = Pfi(ﬂ,d‘,&r, HL/HV}

(1.5)

(1.6)

.7

1.8)
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Thus, for a given launch site and target altitude "r , the performance
quantity e can be represented by constant probability contours on
the surface of the earth as given by (1.1); or alternatively, it can be

given, by (1.8) as a fun:tion of R¢ for various allowble values of <, .
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PROPELLANT RESERVE FUNCTION

The significant perforsmance probability function (f, discussed in
Section 1 can be analyzed conveniently as discussed belov by introducing
the concept of reserve propellant. For a particular launch-site/target
combination we consider a conceptually large population of flight trials
vithout equipment malfunction. For any such flight trial with & normal
guidance termination vithout propellant depletion, let My denote the
available propellant remaining at final cutoff. PFor a flight trial with
propellant depletion prior to a normal guidance termination we define
the corresponding available propellant at burnout as negative. It is
important to note that the positive available propellant My in the
case >f a bipropellant liquid engine will not all be burnadble, due to
outage. By outage is meant the amount of one propellant remaining above
its minimum available level when the available mass for the other has
been expended. To account for this we define an outage X, for the
final stage by extrapolating the mixture ratio to propellant depletion
in some appropriate fashion. In addition, we let JV¥, denote the cor-
responding 'propellant reserve’ at cutoff — that is, the remaining propel-
lant that could have been burned if guidance termination had been eliminated.
Thus,

My = DM, + X (2.1)
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Then the probability 0' of achieving a normal guidance shut down is
given by

@' = fractional number of trials with a normal guidance
termination wvithout propellant depletion

= Probability that My )0 (2.2)

The quantity JCp varies with each trial due o variations in the many
statistical parameters of the system as well as external disturbing quanti-
ties associated with the flight. We assume that in general we can define
appropriate quantities X, °+* An to represent all such uncertainty
effects. A function My  1s then defined by appropriate trajectory

calculations and can be represented by
MT *x NJ?(¢L'A¢I‘>)"L’“73x.‘."x,\i ((.3)

It is clear that (2.3) is a function of the launch-lite/target combination.

Recalling (1.6), (1.7) we can consider an alternate function for M, as

My = Meig e, Re Hy Hy o X, o Xn§ (2.%)
and from (2.1),
nf = MT‘*,“O,KT‘HF,HY; X, o X-.‘ -~ X (2.5)

If we knov the statistics of Xo, *** Xn , then utilizing the
function (2.5), it 1is in principle straight forward to calculate ‘f’(’(') )
the probability distribution function for X, ; e.g. by a

Monte Carlo computing technique. Thus from (2.2) we see that GP

can be evaluated as

a = fp(n') 7% (2.0)
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A practical approximation for the calculation of ef involves a linear
(power series) expansion of the function (2.4) about a set of nominal values.

Let Xy, denote a conveniently chosen nominal value of Xy , With

Kzo0,1,---n such that
X = Xuw T AXx (2.7)
Also, let He = W + 84 (2.8)
Hy > Hyy +AHNHT (2.9)
If the A's are small, then we write (2.5) as
>, = J‘(m+ AM, +U (2.10)
hare "‘r.ﬁﬂ{&.“nmi M’L,“‘, Rr, Wuw, Hew ) Xin,* " ° an‘i (2.11)
My, ITHAME Mey, — Xew iea)
AM, = By AH, + By AHr (2.13)
B“t’ BQ‘(“AR') Z9 {¢‘ d.,Rf Bew “f.,'x'y"" x'\us (2.1&)
”w ] J ’ ) §
B, * B4\, = WNT g oo, Ry Hiw Wym’ Xpu, * - X 2.15)
wr “n( °‘§R7) mf*, Ry, Hew, tyn ! Xou, Xnne (
and Uz 38, sxn (2.16)
L £ ¥ )

QEJ} ntg bh.(*)do,e?) = %X&{Q;“ﬂ RT, LYW Hra ;"":” 'x"'} (x21) (2.17)
— el o/

Then letting )‘(' denote the expected value of NP , we write
Rf =‘x1(¢ia°) Rr, He, Hr) = x’n rAMy + U

B MW+B,“(ML~““.)»8"(H1~»,,,) + 28‘,(7.:1-..3 = Xe (2.18)

wet
Thus ( 2.10) becomes

+ U-VU

X

J(':

"
AR 2" B, (- %) (2.19)

Ko

4



Page 2.4

The standard deviation (p for the statistical quantity T’t' is
"t
P~ L
¢ = {Gg o]

T. %
= Z Bg ( ‘I il 7&?

given by

I,‘
: {Zienesﬁ.wqi
R+ 0 ¢ 20
_ " i 5 " K- 2
- {ZBu‘; +ZZzﬂ. B.B;ﬁdf} (2.20)
vhere k>0 K> (e ¢
- — ‘
o, = { (Xw - xk)‘} (2.21)
cp T (K Rk - %) ookt
fu” Sui oo b=

Let us approximate the probability distribution function f'(J(') by a

normal distribution having the same mean -3—'&' and standard deviation

0; as J‘(P . Ten (2.6) can be approximated as
oo 1 T
- - i —z(u-ny)
Gr = F:i‘h, Ao, Ry, H;,HJ - i € du
uzo
e
Viw € du
“I-np . .
N" )
= é. + g Vin € de (2.23)
where -
- = FL .24
Ne = n'1¢t,‘o,&t, “t'ﬂys '/o-; (2.24)

Thus the quantity (, depends only on the value of Np for the launch-
site/target combination of interest. From (2.2k) and recalling (2.18),

(2.20) we see that the following quantities are involved:



(1) Selected nominal values:

Hiw, Brw , Xou,” " = Xny

(2) System statistical quantities:

XQ) o ¢ o x“
%')Oo.a;

i (L#x)

Page 2.5

(3) Trajectory quantities dependent on ¢ «, Ry :
) /

M+
B“UB.TD B': tor B"



Page 3.1

RANGE FUNCTION

Instead of the function My discussed in Sec. 2 it is sometimes useful
to formulate the performance analysis in terms of a range function as
follows. For a particular launch-site/target combination we determine
all trajectory-related parameters by the applicable targeting calculation
process for the system. Then we consider the hypothetical situation
such that the missile operates under closed-loop guidance, except that
instead of guidance termination we cutoff thrust when the available
propellant reaches some arbitrarily selected value Mpye , vhere My,
includes the extrapolated outage and reserve propellant. If the system
utilizes a vernier we include a nominal vernier phase. The resulting
range a, is thus a function defined by appropriate trajectory calcu-

lations and can be expressed as
a = ai¢;]‘¢lﬂxlut‘”7;xc'-- x“) Mb}

Recalling (1.6), (1.7) we can consider an alternateé function for 6?, as

a = Riﬂ.,“o,&r, He, Hy ')xn,-°°' Xn‘ Mhs

In general the functional form of (R depends on the launch-site/target
combination as indicated in (3.2), due to the trajectory shaping and
guidance steering that is dependent on this combination. However, for
given ¢|,'d,) H"H' some systems utilize the same trajectory shaping

regardless of R, , and we can write a corresponding function for (2 as

LA
.
[

J'zl
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R = _R,wha(,,ﬂhﬂ,;x,,---x..,Mn..i (3.2)
In such a case, 6\ as a function of M,, for particular values of ¢"_ ol
etc., is the same as range to the instantaneous impact point versus available
propellant for a single trajectory calculation. For systems in which this
is not the case, Q must be obtained by a separate trajectory calcula-
tion for a particular value of Ry by utilizing the corresponding target-

ing calculation to secure the proper associated trajectory shaping.

To obtain the relation between the range function R and the function Mo
of (2.4) we recall that My:M,, when ® = Ry. Tus M, 1is defined

implicitly as a function of ¢._’ o, Ry, He H, X 77X, BY

R"' - RfGLJ“‘)RT;N‘; “T; x.’...xu,MfS (3"‘\
Introducing the nominal quantities X,,,, ce+ Yue 8nd recalling (2.11)

we obtain

Rv =R i ¢L,°‘°, RT, ”E,Hﬂ, X.,,; < Xaw, MT“‘ (3.5)

Thus (3.5) determines M,, implicitly. To calculate Mp we require the
additional trajectory quantities By_, By, defined by (2.14), (2.15) and
B.' ces Bhn as defined by (2.17 ). Thus we write (3.4) in differential

form, with ‘., e, Ry held constant:

— IR{G, e Rr o,y X, - Xo, Mr Jan, + Riq o Ry M o, 0,0 MId N
M, My

"
§ ORTA a0 Ry e, Wy, X5, o X, Me S dMhy +Z IR ¢ wo Ry Hpr %, M dx,
™, i

0

(3.6)



Therefore,

A__’_Affﬁ,“‘, ‘T, .L,”Y, L P xh.i
¥

a—riri ¢»,"; RT: H‘ ’ H'"'/' ’ "'S - -

IHL

Mrig oo, Ry, Ho Hyx, -
dH,

Let
Ao= Ao(¢&,d0, k‘l’) =
A~ A@ =, RY) =
Awr ~ A.,( 6, Ry) =
and for K=ty " n

a_g s*,d.l Rr’ ”W' pr p x'“/

%Biﬂ‘do'gr’ H"l“" x'/ o x.‘Mf‘
"

a__R_h'%'R7’ “L,‘h,xh" R 'M'§
N,

aBi‘b,.‘., RT, "a-, Hf"u,"  Xn, Mf}
oM,

\3.0)

é’%v“""‘ Re W, Hy 0, oo Xs, M

d&{¢‘l‘.IR"f N‘r ”T; x'l ce-Xu, MT}
X..S = _ Wy
)-giﬁ do, Rt, “;,Hr, ‘c,' e - xh, MTS
M,

(3
37

a—K(¢"/°‘«’)R‘r‘ Huo Brw, X " Xons, MNS (3.1
oMy,

IR (e Rr, Mo, oo Ko, == Yow, M} (5
OHuw

i&(ﬂ)‘.l RT, ““,H")XI“,... xh“)Mfﬂs
PL

---x..,Mn.?]

A, : Al *,‘0, Rr) ~ b}

Then recalling (2.14), (2.15), (2.17) we cbtain the following important

results:

B
Bur
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for K=>0, .-
Ax
B"» A. (3.16
vhere wve expect A. < 0

With My, and 5“'.."..""B_detem1ned ve can vrite the linear function
N.' given by (2.10) and can calculate Gp froz (2.18), (2.20, (2.23),

(2.24).

It is useful to approximate the range function (3.2) by a linear expansicn

about “\...,I,.,/ Kops "+ - You, M,, - Thus from (3.2), (3.5) we write
Gl = Ry + Au(n-n,) + A"r(“r‘”no)
(4]
d AR AN ML) G

ky
A special case for the function a that is important in .:iudying the

effect of propellant depletion on impact statistics corresponds to missi.e
operation until propellant depletion. Thus we have M = X, = outage
for the final stage. The corresponding range function is denoted by a'

and represented by
a' = Ri"d.,g“"“;' “t’ Y,’o--x.l x.‘ (3.18

The linearized form for Gr is given by (2.12), (3.17) as

G'=RT+AR.|*Y’A.N1N (

Al

.y

vhere, utilizing (2.15), (3.1&), (3.15},

- - T O et
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AR. = AwCH = Hou) + Aur( By - Hew)

:_AoAMu (3.20)

and utilizing (2.16), (3.16) _

Y * 2 AG-n)

L &1
= -— A. U (R.2);
Recalling (2.10), then (3.19) can be written as
R, = Ry - AJC, (3.22;
Then =
a' = Rq- + AR' * Y - A\N'“ (3.2
= R-t - Ao ){' (3.2%
Thus — —

Recalling (2.20), we obtain the standard deviation O, for Q'

as

g & -y}
= Al

~

We therefore approximate the probability distribution function {(Q,) for
R, by X
oy - (R RSl
(&) = Z e
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The cuwmlative probability G‘,)K. is given by
2R i 51;&(&)‘“'
Rpr®e np + (Rr-Relg
R
- _'_ <+ -L ~
2 v;; € du (3.27)
o

were M 2yl a by b by) s G T GG, . Ry, H., W)

Ve recall that a' relates to the hypothetical situation of a trajectory
corresponding to a target at Rf , for which wve eliminate guidance termina-
tion and continue to propellant depletion; and 6:',' R is the probability
that in such a situation a range of at least R, wvill be achieved. Thus

0~ 2 Ry is identical with 0' , which can be seen from (3.27) by com-

paring wvith (2.23).
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ADDITIONAL PERFORMANCE CALCULATIONS

It is often 0of interest to consider target-range for given ¢L ) oo
corresponding to some specified value of the probability a . In
particular, comparison between various systems is more meaningful in
terms of differences in target-range at the same probability level rather
than differences in probebility for the same target-range. Thus for any
change in parameter values we are interested in the target-range P:.r to
maintain the same probability value Gp corresponding to Ry for the
previous conditions. An important example of how this calculation can
be accomplished is given below in discussing the method of handling

launch-site and target altitude quantities differing from standard values.

Launch-Site and Target Altitude

Let us suppose we have obtained the prcbability results for the nominal
. T s B ¢
conditions My = Hiw 2 H_ , Hy = Hyw = Hy where H_ , Hy are
convenient standard values chosen for suitable linear expansion. Denoting
-
[ - - Yo w
this special result as G' = 0,(¢|. ‘N.’RY) - Gf‘¢;, o R+ ) H._) H‘r) (4.1)

we write from (2.18), (2.23), (2.24):

Ny,
\ ® - 1 e - -4
0? - Z ﬁT‘CA (w.2)
ard o

T (A, R) En (@ o R W HE)
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vhere

np = o'.f Mw zB(ﬁa.Rf)lx - Xew] = X }

and M* - M* _ . % .
™ T~(¢L'~°) Rr) = MY(¢") “0) er "L‘ Hfl x.ul se e X.')
¢+
We seek to determine the value of R, corresponding to 0,, = 6’,
with H, = H: +AH‘/ Hy = H: +AH, + Thus the basic condition

for determining R:, is given as follows:
q*t(y("t; LIAN ”;)zoz(ﬂ,“‘,x: He, Hu)

. "-u‘/z
= 37 +Sr'

°
vhere

i \ » % . .
siMn  * BICR-) + B (R W)
s i 6‘(%,“.,@)(;“-!"‘)—;‘ }

3,
i

My, = M(S <, RD) = M (o, RE B HE Xy oo - Xaw)

Thus
t =
hy = n
As R' ~ R: , then in keeping with the linearization assumption

being utilized,

B: -:.B:(Q,,KO,RT) = )x?(¢ ‘G KT HL; “r Xw "‘x-“)
L U]

= B.‘ (ﬁ. ,d', R‘:')

(4.3)

(b.4)

—~
P~
.

\

-

—
&

-1

~—r

(k.9)
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Then substituting (4.3), (4.6) 1into (4.8) and utilizing (4.9), we obtain

B:L(RL - n:) + B’r(n ) Men M,,, (4.10)

Recalling (3.5), (3.10) we write

L]

Rt = R{¢L,“‘; R:/H:'H,.;K- o Xuw, MTN}

?

= R?¢L'Ko) Rf) H:} HT ) YoN'... X....,M:»..}

L

®
Riq'do, RT' H:’ H: ,' Xoﬂ, ‘e Xuw Mf“}

AR id °( Rf H Hf )., "Xu~ MyNS[M"U M‘YN]
oMy

= Ry + AL (ML - ME) (4.11)

In step two above we have neglected the change in the form of the range

function due to the retargeting from RT’ to R.". as in (3.3). Com-

bining (4.10), (4.11) and utilizing (3.14), (3.15) we obtain

t
R: = R, +AR: (L.17
vhere as in (3.20),
x * ¥ 5
AR‘“ = A.L(HL’ HL) +Au,(Hr"“r) (bol:

#
Thus 1if RT is the target-range for a probability 6’, determined for
L T %
standard altitudes HL, Hr , then we add AR“ to it to get the target-

&
range at the same probability 0‘. corresponding to altitudes HL' H,.

Changes in Expected Values

Another performance calculation of interest is that arising from a re-evai-

uation of the expected values 7.‘ *+* X, for which we have previously
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obtained the result 0', = FP (‘A,“% Rn"»,“,\- Let the new expected

values be denoted by iI ce e X, and let the standard deviations

0; co . @ remain unchanged. We can obtain the new probability

t. A
0 ¢(ﬂ_ o, RT H, “7) as follows. Now the nominal expension (2.1C, .8

independent of the expected values. Thus from (2.18), (2.24) and assum-

ing this linear approximation to be valid over the interval including the

nev expected values, with dispersion around them, we write

T -
T PG et + D BR!-
K0
= r\' 4 AA"'
vhere h' = "'(dc,"‘O, Rr,HL,Hy) corresponds to (7., O O
and n
A~ cJ U‘E ZB"( 11 X)
=
i
= A X
g L AR
. R T
Then from (2.23), N, ¥ 4Ny

- A

P't(qs, o, Rr,“;,“v) = é + ia C e

.r"ﬂ'
-k"s
y 2 \Ge

vhere

32
"

ny
As discussed previously, instead of calculating a new value

particular launch-site/target combination (¢L o, R,
) )

- . T Sy e

)]

P(&., R Hi Hy) T+ a0,

G: for a

Ho, He)

(holb)

(L.1%)

(4. 5t)

(L.16)

(4.37)



Page 4.5

we may be interested in determining the target-range increment at some
particular value of probability arising from the change in expected values.

t
That is, we seek to determine R‘l’ such that

Fp(¢;iofo,Rr,H”H7) = Prr(q,"m RI L Hf) (4.13)
From (2.23) we see that

h'(¢t)do) er H;'Hr) = nr(¢¢.,a(o, R: ’ HL, HY) (4.9

From (2.24), (2.18) and assuming B, = Bu(¢¢;d°, RT): B.‘(C} " RI-)
as in (4.9), then we obtain ’

MEN = Myn = Z BK(YK N )—(ht)

K=o
i A—o Z A“(Z‘f- 7“) (k.20)
k=zeo
where we have utilized (3.16) and
Mrn = MTN(¢L,‘°, RT) (b.21)
MIN = Mrp(¢‘_,do) R&) (4.22)
Recalling (3.5), then as in (4.11), we obtain
" |
RE = Ry + Ad(Miv ~M) (4.23)
Then substituting (4.20) into (L4.23) we obtain
+t -
Ry = Ry ¢ ARY (k.24)
LY
where - -
ARt = Z Ak(x“t- x“) (4.25a)
Kz,
P ‘\%J Ahp 6; (4.25c)

with N, given by (4.15) and 0; by (3.25).
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The expressions (L4.25a) and (L4.13) show the adjustments in target-range
under parameter changes, at constant probability. Accordingly, we say
that range is exchanged for a compensating parameter change and call the

quantities A“L A"-r A * - An "range exchange coefficients."
J » ’

For the "maximum target-range'" case discussed in Sec. 1 they would be
called specifically "maximum target-range exchange coefficients" , and

it 1s this set of exchange coefficients that we are most interested in.

Additional Approximations

A useful approximation that has been found valid for some systems is to
consider the quantity 0; of (2.20) as constant and independent of the
launch-site/target combination. Thus with @, determined in advance it

only remains to find z in order to calculate (?' for any q'«.' RT;“*”"‘
If H.: Hw) Hy * Wy and the nominal quantities Kin * = Xnw 8T€

selected as expected values we see from (2.18) that My, 18 the only
trajectory quantity required to determine 0' for the target of interest.
This is particularly useful for determining G)P as part of an opera-

tional targeting calculation.

For the special case of H = H.u Hy = Hrw
rd
for all ranges and for given Q' Ao , then the probability function GP

is determined by 5(.' which can be represented by a function

;c' = MTN(¢;,°(‘,RT> - ?o
- 5%, (ko) e
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To differentiate (4.2¢) we recall (3.5), (3.10) and obtain

= ﬁiq»;d'rkrt H‘”/“"“) x"")“.x"‘;"‘7”q 3___MI."'(¢,do/ RT)
(‘)Mﬂt akr

Ao 3¢ (Ry)
IRy

or _
DYk = o
IRt )

In (L.27) we have neglected the change in form of tne function GE for

different targets, as in (3.3).

The function given by (4.26) completely determines G} as & function of
Re. as F(,('w) varies almost linearly with R4 , not many deter-
minations for values of R“- are required. This suggests an approxi-
mation in which we introduce linear extrapolation by a determination of
the function and its slope at some range ]if . This would be effected
over the interval of all ranges of interest. We note that this differs
somewhat from the approximation (2.10) in which we linearize only over
the dispersion for a given target. To discuss such a procedure we first

define

—

A. = Ad( 4, x, Ry)
6’:; = Gi(ﬁ,“o,k\r) } IXJO;
X R ED) T M9, 7)) - X

A linear approximation to (4.20) can be writtzn as

X)) = R, + 23Rk, -R,)
)(PN

I,

& iﬁ:l;F{r - iir~]

17

(L,29)

(L,30

(.31,

(L.32)



Utilizirg (2.24), we obtain
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(13

i

and that the quantities

n: = n;(k') g "Q ; R.
‘ L
vhere ~ o~ ~
R, Ry - A X,
Thus from (2.23),
- &7 - )
[ {
| 1 W4
0? = L + OG' e do
We note that 69 = 0.) when Rr - R’.

A -~

R , On

completely determine 0,

in this method of approximation.

Thus if the nominals are selected as expected values and if )('N: °,

then from (4.32),

P'(Q, ", '7)

~ ~ ~
Ro = k'r and only 0, 18 required to determine

v
. Selecting Ry at .50 probability however requires

a linear extrapolation over a longer interval than if Ry corresponds to

a reasonably high probability, and is therefore not recommended.

To calculate the error due to the approximation (4.32) let

Of

6 -

= 0;’(&’) =

0 (rr) =

2

1
2

= ¢
4

+ 1L -
Van € 4 (L.26
Y
01_
~575(0)
SUNNAA
A Jomea (4.37)
[+

To determine the difference between the approximate target-range R'T

and the more correct value R,. for an arbitrary probability level 0'

ve write
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Qr) = G (R
or M}k = XG(RY)

]
S
b 4

-’.

M-
r—
>

-'

[
;n)
ite?

.’-

4

q

|
»

q

Therefore
R, = Ry + AR

where the error AR* at the probability of interest is given by
sR = -Af LR I (R

This is shown schematically in Fig. 4.1

/J‘vz,( R+)

3 (Rs)

Fig. 4.1

(4.39)

(koL
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Ao 3.10 3.3 4’ b.a bl
Au, 3.11 3.3 /~';. b.17 b.b
Ay 3.12 3.3 ® 3.1 3.1
Ax 3.13 3.3 3.2 31
X 1.5 1.k 3.3 3.2
By, 2.14 2.3 3.17 3.4
B, 2.15 2.3 ?., 3.18 3.4
B 2.17 2.3 3.19 3.4
Bx .4 4.2 3.24 3.5
H, - 1.3 e 3.23 3.5
Al, 2.8 2.3 Rr 1.4 1.3
Huw = 2.3 A\ h.25 k.5
HY - k.1 6R! L.hl 4.9
Hr - 1.3 ARy 3.20 3.5
Ay 2.9 2.3 Ty k.13 b.3
Hrw - 2.3 fim 2.22 2.4
HE - bl Tn 2.21 2.4
A - 1.3 5 2.20 2.4
Ar - 1.3 % 3.25 3.5
AN 143 1.3 U 2.16 2.3
My v 3.1 " - 1.3
N', 2.1 2.1 (,)r = 1.3
M: b.32 4.7 O 1.2 1.3
"T(, 2.18 2.3 Xo - 2.1
o 2.12 2.3 Xx - 2.2
My 2.3 2.1 - - 2.3
Mrn a.n 2.3 OXw 2.7 2.3
M:. bk b2 h 4 3.21 3.5
AM, 2.13 2.3
Me 2.2k 2.4
n’" h.3 b.2
v\g k.33 k.8
Ah, 4.15 b4
4 = 1.2
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